Temporally Coherent Clustering of Student Data
نویسندگان
چکیده
The extraction of student behavior is an important task in educational data mining. A common approach to detect similar behavior patterns is to cluster sequential data. Standard approaches identify clusters at each time step separately and typically show low performance for data that inherently suffer from noise, resulting in temporally inconsistent clusters. We propose an evolutionary clustering pipeline that can be applied to learning data, aiming at improving cluster stability over multiple training sessions in the presence of noise. Our model selection is designed such that relevant cluster evolution e↵ects can be captured. The pipeline can be used as a black box for any intelligent tutoring system (ITS). We show that our method outperforms previous work regarding clustering performance and stability on synthetic data. Using log data from two ITS, we demonstrate that the proposed pipeline is able to detect interesting student behavior and properties of learning environments.
منابع مشابه
Online Aggregation of Coherent Generators Based on Electrical Parameters of Synchronous Generators
This paper proposes a novel approach for coherent generators online clustering in a large power system following a wide area disturbance. An interconnected power system may become unstable due to severe contingency when it is operated close to the stability boundaries. Hence, the bulk power system controlled islanding is the last resort to prevent catastrophic cascading outages and wide area bl...
متن کاملTemporal Hierarchical Clustering
We study hierarchical clusterings of metric spaces that change over time. This is a natural geometric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of unlabeled point sets. We encode the clustering objective by embedding each point set into an ultrametric spa...
متن کاملClustering Student Learning Activity Data
We show a variety of ways to cluster student activity datasets using different clustering and subspace clustering algorithms. Our results suggest that each algorithm has its own strength and weakness, and can be used to find clusters of different properties. 1 Background Introduction Many education datasets are by nature high dimensional. Finding coherent and compact clusters becomes difficult ...
متن کاملTemporally Coherent 3D Animation Reconstruction from RGB-D Video Data
We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive...
متن کاملTemporally Coherent CRP: A Bayesian Non-Parametric Approach for Clustering Tracklets with applications to Person Discovery in Videos
Tracklet Clustering is central to several Computer vision tasks [17][20]. A video can be represented as a sequence of tracklets, each spanning over 10-20 successive video frames, and each tracklet is associated with one entity (eg. person in case of TV-serial videos). Tracklets are instances of data-types exhibiting rich spatio-temporal structure. Existing approaches model tracklets by deployin...
متن کامل